

REGIÃO AUTÓNOMA DA MADEIRA GOVERNO REGIONAL SECRETARIA REGIONAL DOS ASSUNTOS SOCIAIS INSTITUTO DE ADMINISTRAÇÃO DA SAÚDE E ASSUNTOS SOCIAIS, IP-RAM

CIRCULAR INFORMATIVA

Instituto de Administração da Saúde e Assuntos Sociais, IP-RAM

S 18

0.0.0.0

Original

Assunto: Iodo – importância para a saúde e o papel da alimentação – Recomendações

Para: Profissionais de Saúde do Sistema Regional de Saúde

O iodo é um oligoelemento essencial à vida, uma vez que não é sintetizado pelo organismo, deverá ser obtido a partir de fontes alimentares.

O iodo é acumulado na glândula tiroide, tendo como função a biossíntese das hormonas da tiroide (tiroxina – T4 e triiodotironina T3 correspondendo a 65% e 59% do seu peso molecular, respetivamente). Estas hormonas são responsáveis pela regulação do metabolismo celular e desempenham um papel determinante no crescimento e desenvolvimento dos órgãos, especialmente do cérebro. Desta forma, a carência de iodo terá um enorme impacto na saúde.

As consequências resultantes de insuficiente ingestão na dieta, estão relacionadas com o seu efeito na tiroide que se podem manifestar como: bócio, hipotiroidismo e problemas relacionados com a gravidez.

Em Portugal, os dados disponíveis de iodúrias são suficientes para despertarem preocupação, uma vez que apontam para uma carência de iodo muito expressiva e generalizada ao longo do país. No caso da RAM, 68% das crianças em idade escolar e 92% das mulheres grávidas apresentaram níveis inadequados de iodúria¹.

As carências de iodo tornam-se mais marcadas em determinadas fases do ciclo de vida, visto as necessidades se encontrarem aumentadas, como são as fases de gravidez e amamentação. Na fase de preconceção deve ser considerada a suplementação de iodo como medida preventiva. A Direção-Geral da Saúde (DGS) atenta a esta situação publicou "Orientação sobre o aporte de iodo em mulheres na preconceção, gravidez e amamentação", adaptada à RAM pelo IASAÚDE, IP-RAM a 26 de agosto de 2013, através de circular normativa nº 29.

in: Rer Port Endrocrinol Diabetes Metab. 2012;7(2):2-7

REGIÃO AUTÓNOMA DA MADEIRA

GOVERNO REGIONAL
SECRETARIA REGIONAL DOS ASSUNTOS SOCIAIS
INSTITUTO DE ADMINISTRAÇÃO DA SAÚDE
E ASSUNTOS SOCIAIS, IP-RAM

- De acordo com a norma subscrita pelo IASAÚDE, IP-RAM "as mulheres em preconceção, grávidas ou a amamentar devem receber um suplemento diário de iodo sob a forma de iodeto de potássio 150 a 200 μg /dia, desde o período preconcecional, durante toda a gravidez e enquanto durar o aleitamento materno exclusivo...".
- De forma a contribuir para a ingestão apropriada de iodo há, naturalmente, que assegurar uma alimentação variada, incluindo alimentos que, habitualmente são fontes de iodo, em particular: sal iodado (em substituição do sal comum), peixe, crustáceos, algas, leguminosas e hortícolas e, ainda leite e seus derivados.
- Para assegurar as necessidades de iodo diárias não é necessário um consumo acrescido de sal iodado, uma vez que a dieta normossódica (5g de sal iodado/dia) permite atender às recomendações de ingestão de iodo, e se esta quantidade for respeitada não existe risco de consumo excessivo de sal.
- O sal iodado deverá ser adequadamente conservado e armazenado sob o risco de perder as suas propriedades. Mantido em local fresco e ventilado, longe de fontes de calor. Após a abertura o sal deverá ser mantido no involucro original, dentro de uma embalagem (vidro ou plástico), de preferência com tampa e longe de locais molhados ou húmidos, devendo ser evitado colocar colheres molhadas em contacto com o produto.

O IASAÚDE, IP-RAM recomenda a substituição do sal comum por sal iodado em preparação e confeção das refeições em:

- Estabelecimentos de Ensino dos diferentes níveis de escolaridade.
- Estabelecimentos de apoio à terceira idade e lares de idosos.
- Empresas da área da restauração e afins, que produzem produtos de padaria, pastelaria, refeições e pratos.

A Presidente do Conselho Diretivo

Ana Nunes

Qua Suns

Anexo: Publicação da DGS "Iodo - Importância para a Saúde e o Papel da Alimentação" (13 pag.)

DSPAG - AC/CF

IODO – IMPORTÂNCIA PARA A SAÚDE E O PAPEL DA ALIMENTAÇÃO

Autores

Diana Teixeira

Conceição Calhau

Diogo Pestana

Lisa Vicente

Pedro Graça

Design

IADE - Instituto de Arte, Design e Empresa

Editor

Programa Nacional para a Promoção da Alimentação Saudável

Direção-Geral da Saúde

Alameda D. Afonso Henriques, 45 - 1049-005 Lisboa

Portugal

Tel.: 21 843 05 00

E-mail: geral@dgs.pt

Lisboa, 2014

Nota Introdutória

O iodo é um oligoelemento, micronutriente. Significa isto, que é necessário ao funcionamento do organismo, ao seu metabolismo, em múltiplas funções, e que se obtém a partir do consumo de alimentos que o contenham.

Apesar das necessidades diárias serem na ordem dos microgramas (ver tabela 2), a necessidade de ingerir iodo e a sua deficiência na dieta são assuntos pertinentes pois a sua carência acarreta graves problemas para a saúde humana.

Uma das principais funções do iodo no organismo prende-se com a síntese das hormonas da tiroide. As hormonas da tiroide estão envolvidas em múltiplas funções reguladoras do funcionamento do organismo e a sua carência poderá comprometer diversas funções.

Em Portugal, os dados sobre este problema eram muito escassos e não estavam atualizados até há pouco tempo. Entretanto, e através de trabalhos realizados e publicados recentemente, sobre o aporte de iodo em Portugal, sugere-se a necessidade de uma intervenção urgente [1-3].

A Organização Mundial de Saúde (OMS) expressa a sua preocupação sobre este tema, pelo menos desde 1993, recomendando uma medida que considera de baixo custo e de elevada eficácia, a fortificação universal do sal com iodo. O que ainda não acontece em Portugal, apesar de iniciados alguns esforços recentes, quer pela DGS, com a orientação para a suplementação de mulheres grávidas e lactantes, quer pela DGE com circular nº3: DSEEAS/DGE/ 2013 para o uso de sal iodado nas cantinas escolares.

1. O QUE É O IODO E A SUA IMPORTÂNCIA

O iodo é um oligoelemento essencial à vida. Uma vez que não é sintetizado pelo organismo, deverá ser obtido a partir de fontes alimentares [4].

O iodo é acumulado na glândula tiroide, tendo como função a biossíntese das hormonas da tiroide (tiroxina – T4 e triiodotironina – T3 correspondendo a 65% e 59% do seu peso molecular, respetivamente) [5].

Estas hormonas são responsáveis pela regulação do metabolismo celular, nomeadamente da taxa de metabolismo basal e temperatura corporal, e desempenham um papel determinante no crescimento e desenvolvimento dos órgãos, especialmente do cérebro [6].

Considerando-se que este é fundamental para a síntese das hormonas da tiroide e que, estas exercem múltiplas funções-chave no metabolismo, a carência de iodo terá um enorme impacto na saúde.

2. QUAIS AS FONTES DE IODO NA DIETA?

O iodo está presente naturalmente no solo e na água do mar. A concentração de iodo nas plantas, ou animais, vai depender do teor de iodo dos solos e das águas, da utilização de desinfetantes iodados na indústria alimentar e uso, na agricultura, de fertilizantes ricos em iodo [5].

- A concentração de iodo numa planta poderá ser, em média, de 1 mg/kg de peso seco. Em solos pobres em iodo a sua concentração nas plantas poderá ser de cerca de 1% daquele valor.
- Nos animais, a concentração de iodo encontrada reflete a concentração de iodo nas suas rações, o que poderá muitas vezes traduzir-se em valores baixos, se a ração ou pastagens provêm de solos pobres em iodo.
- Nos animais marinhos, a concentração de iodo poderá ser maior e, por isso são estes alimentos muitas vezes considerados fontes relevantes de iodo, bem como as algas.

Tabela 1. Fontes alimentares de iodo [4]

Alimentos ricos em iodo		
Peixes, crustáceos, algas		
Fontes variáveis		
Vegetais, carne, leite e seus derivados		
Alimentos fortificados		
Sal iodado		

Optar pelo sal iodado e comer mais peixe e produtos do mar é a melhor solução para combater as carências de iodo.

Em Portugal, a quantidade de iodo não se encontra rotulada na embalagem dos alimentos, pelo que podem ser difíceis de identificar outras fontes alimentares de iodo.

3. NECESSIDADES DIÁRIAS DE IODO

As necessidades diárias de iodo variam ao longo do ciclo de vida [7, 8].

Tabela 2. Necessidades diárias de iodo ao longo da vida

Idades (anos)	μg iodo/dia
0-0,5	40
0,5-1	50
1-3	70
4-6	90
7-10	120
(Homens) > 10	150
(Mulheres) > 10	150
Grávidas	175
Lactantes	200

Um adulto saudável precisa de 150 microgramas de iodo. Pode obtê-lo ingerindo, por exemplo, dois gramas de sal iodado e uma dose de bacalhau.

4. MONITORIZAÇÃO DOS NÍVEIS DE IODO

A quantidade de iodo encontrada na urina (iodúria) é proporcional à quantidade plasmática, daí que a iodúria seja considerada um excelente biomarcador dos níveis de iodo no organismo (tabela 3)[9]. O suor, as fezes e o leite materno, representam outras vias de excreção do iodo.

Tabela 3. Critérios para a avaliação da adequação da ingestão de iodo tendo por base os valores de iodúria (valores de referência para crianças e adultos exceto para mulheres grávidas e lactantes)[7]

Concentração de iodo na urina (iodúria, µg/L)	Ingestão de iodo	Classificação
<20	Insuficiente	Deficiência de iodo severa
20-49	Insuficiente	Deficiência de iodo moderada
50-99	Insuficiente	Deficiência de iodo severa leve
100-199	Adequada	Adequada
200-299	Acima do recomendado	Podem representar valores adequados para mulheres grávidas ou lactantes, no entanto podem ser considerados valores de risco para a população em geral
≥ 300	Excessiva	Risco de complicações (hipertireoidismo induzido pelo iodo, doença tiroidea autoimune) (tabela 4)

Tabela 4. Nível Máximo de Ingestão Tolerável (UL) [10]

	Nível Máximo de Ingestão	
Idade	Tolerável (UL) (µg por dia)	
1-3	200	
4-6	250	
7-10	300	
11-14	450	
15-17	500	
Adultos	1,100	
Grávidas e Lactantes	600	

5. DEFICIÊNCIAS DE IODO E SUAS CONSEQUÊNCIAS

Todos os sintomas da deficiência em iodo, resultante de insuficiente ingestão na dieta, estão relacionados com o seu efeito na tiroide [11, 12]:

- Bócio níveis inadequados de iodo na dieta associam-se a bócio endémico, o que praticamente parece ter desaparecido na Europa Ocidental.
- Hipotiroidismo a preocupação atual são as carências ligeiras a moderadas de iodo. A
 consequência fisiopatológica desta situação é o hipotiroidismo com repercussões
 graves no crescimento e também na vida adulta.
- Problemas relacionados com a gravidez as grávidas e as lactantes são um grupo de risco para a carência de iodo. Estudos demonstram que a suplementação com iodeto de potássio permite atingir os valores recomendados de 250 μg/dia.

6. A IMPORTÂNCIA DO IODO NA GRAVIDEZ E NA CRIANÇA

Durante a preconceção, gravidez e amamentação impõe-se uma adequada ingestão de iodo necessária para completar as necessidades da grávida, para a maturação do sistema nervoso central do feto e para o seu adequado desenvolvimento.

Porque é que uma grávida necessita de consumir mais iodo [13]:

- aumento da necessidade da tiroxina (T4) para manter o normal metabolismo da mulher;
- transferência de T4 e iodo para o feto durante a gravidez;
- aumento da excreção renal na grávida.

Tabela 5. Critérios para a avaliação da adequação da ingestão de iodo tendo por base os valores de iodúria (valores de referência para mulheres grávidas)^a [7].

Concentração de iodo na					
Grupo populacional	urina (iodúria, μg/L)	Ingestão de iodo			
	<150	Insuficiente			
	150-249	Adequado			
Grávidas	250-499	Acima do recomendado			
	≥500	Excessiva ^b			

 $^{^{}a}$ Para mulheres lactantes e crianças com idade inferior a 2 anos a concentração de iodo na urina de 100 μ g/L pode ser utilizada para identificar uma adequada ingestão de iodo, no entanto as restantes categorias para a ingestão de iodo não estão definidas. Apesar das mulheres lactantes apresentarem as mesmas necessidades das mulheres grávidas, a concentração de iodo na urina é inferior porque o iodo é libertado pelo leite materno.

^b O termo excessivo significa uma excessiva quantidade de iodo comparativamente à quantidade necessária para prevenir e controlar deficiência de iodo.

A deficiência de iodo grave na mãe tem sido associada a abortos espontâneos, nadomorto, malformação congénita e partos prematuros [4].

As hormonas tiroideias asseguram um desenvolvimento programado e coordenado do sistema nervoso central do feto e da criança. Deficiência em iodo durante a vida *in utero* terá repercussões no neurodesenvolvimento, refletindo-se em atraso mental, problemas motores e no crescimento, audição e fala [11].

Este é um facto bem demonstrado em estudos realizados em países europeus, onde se mostra que défices de iodo na mãe comprometem o QI do(a) filho(a) [14].

Na forma mais severa, uma disfunção da tiroide pode resultar em cretinismo (uma síndrome caracterizada por danos permanentes ao cérebro, atraso mental, mutismo surdo, espasticidade, e baixa estatura).

7. DEFICIÊNCIA DE IODO EM PORTUGAL

Em Portugal, os dados disponíveis de iodúrias são escassos mas suficientes para despertarem preocupação, uma vez que apontam para uma carência em iodo muito expressiva e generalizada ao longo do país e ilhas.

A evidência científica recente sugere a existência de deficiência de iodo em populações de risco em Portugal, nomeadamente em grávidas e lactantes [1, 2, 15].

Num estudo realizado com 3631 grávidas em 17 maternidades, do Interior, Litoral e Regiões Autónomas de Portugal verificou-se que o aporte de iodo é insuficiente de acordo com as recomendações da Organização Mundial de Saúde, mesmo em zonas costeiras [1]. Neste estudo recente, 83% das grávidas do Continente consumiam menos iodo do que era recomendado e apenas 17% tinham valores de iodúria adequados. As iodúrias obtidas nas Regiões Autónomas eram significativamente inferiores às obtidas no Continente. Na Madeira 92% das grávidas apresentavam níveis inadequados e nos Açores a percentagem de grávidas com iodúrias insuficientes ascendia a 99%.

Num estudo realizado na região do Minho demonstrou-se que mulheres em idade fértil e grávidas apresentavam deficiência de iodo com uma mediana de excreção de iodo na urina <75µg/L [2].

Verificou-se, igualmente, a existência de bócio em 14% das grávidas. Num outro estudo dos mesmos investigadores e na mesma região, verificou-se que o perfil das hormonas tiroideias durante a gravidez não era o adequado para suprir as necessidades do feto [15].

A análise atual poderá levantar a preocupação duma carência de iodo na população Portuguesa

8. ESTRATÉGIAS DE INTERVENÇÃO

A Organização Mundial de Saúde (OMS) tem vindo a priorizar a temática do iodo. De acordo com esta entidade existem em todo o mundo cerca de 2,2 biliões de indivíduos em risco [7]. Em 2010, o canal EURRECA (EURopean micronutrient RECommendations Aligned), nomeou o iodo como um dos dez micronutrientes com maior necessidade de revisão no que respeita às recomendações nutricionais e desenvolvimento de políticas de coligação [16]. A quantidade presente deste mineral nos alimentos não é suficiente para cobrir as necessidades diárias em iodo, tornando-se necessário recorrer a alimentos fortificados (aos quais se adiciona iodo) ou a suplementos [7].

8.1. SAL IODADO

- A OMS recomenda a disponibilização **universal de iodo** na forma de **sal iodado**, como fonte de excelência de iodo na dieta, ou de qualquer outra apresentação que possa, duma forma generalizada, chegar a toda a população.
- A utilização de sal iodado (20-40 mg de iodo por quilo de sal) é a forma mais económica e simples de introduzir mais iodo na alimentação; é uma prática corrente e segura e cobre 2/3 da população mundial.
- A iodização universal do sal pode eliminar a necessidade de suplementação específica na gravidez e lactação.
- A utilização de sal iodado na confeção de refeições escolares poderá ser um método eficaz na prevenção de défices em iodo na população infantojuvenil.
- O sal iodado quando usado na produção de alimentos como o pão, queijos, snacks e também algumas refeições/pratos preparados, pode contribuir significativamente para o aumento da ingestão de iodo pela dieta. O que reforça a necessidade de que a indústria alimentar coopere com as autoridades responsáveis pela regulação do sal iodado, e priorize este tópico.
- De um modo geral, a quantidade de iodo adicionada ao sal deve permitir que, mesmo consumindo os 5 g de sal recomendados pela OMS, a quantidade de iodo disponibilidade seja suficiente. E que, consumidores que ultrapassem este valores consumido valores que podem chegar ao 10 -15 g de sal iodado por dia, não estejam em risco pelo consumo excessivo de iodo.

8.2. OUTRAS ESTRATÉGIAS

- Na Roménia, o óleo iodado substituiu com sucesso o sal iodado.
- Em Itália (Sicília) suplementa-se a água com iodo.
- Fora da Europa, o iodo é adicionado ao chá na China, e testado em açúcar na Guatemala e no Sudão.
- Aumentar o teor de iodo na alimentação animal pode indiretamente aumentar o teor de iodo em produtos lácteos, como o leite que é agora um dos principais contribuintes da ingestão de iodo através da dieta no norte da Europa e Reino Unido [12].

8.3. EM PORTUGAL

Em Portugal, o esforço foi iniciado pela Direção-Geral da Saúde (DGS) com a publicação recente, em 26 de Agosto de 2013, de uma Orientação sobre o aporte de iodo em mulheres na preconceção, gravidez e amamentação [17].

- De acordo com esta Orientação, "as mulheres em preconceção, grávidas ou a amamentar devem receber um suplemento diário de iodo sob a forma de iodeto de potássio 150 a 200 μg/dia, desde o período preconcecional, durante toda a gravidez e enquanto durar o aleitamento materno exclusivo…";
- De forma a contribuir para a ingestão apropriada de iodo há que assegurar uma alimentação variada, incluindo alimentos que, habitualmente, são fontes de iodo como o pescado e outras fontes alimentares recomendadas pelos profissionais de saúde e adaptadas caso a caso em função do melhor conhecimento sobre a composição nutricional disponível.
- Recomenda-se a substituição do sal comum por sal iodado nas quantidades de sal recomendadas e que não devem ultrapassar os 5 g/dia.
- Acrescenta-se ainda que, seguindo esta preocupação e esforço, a Direção-Geral da Educação (DGE) em colaboração com o Programa Nacional para a Promoção da Alimentação Saudável (PNPAS), publicou em Agosto de 2013 uma circular no sentido da recomendação da utilização de sal iodado na preparação das refeições escolares [18].

Em suma, recomendações consistentes e uma monitorização contínua são cruciais para melhorar a ingestão de iodo. Será importante conciliar áreas de atuação para poder colocar em prática a monitorização do estado de iodo da população em Portugal, fazendo o diagnóstico, uma intervenção adequada, e por fim, monitorizar o impacto da intervenção.

Pese embora a deficiência de iodo continue a ser uma preocupação de saúde pública na Europa, a aliança entre os governos, indústria e consumidores, combinada com os avanços ocorridos na fortificação de iodo no sal e da suplementação para as grávidas, combinadas com a melhoria da comunicação ao cidadão, oferecem a esperança de uma melhoria deste problema.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Limbert, E., et al., *Iodine intake in Portuguese pregnant women: results of a countrywide study.* Eur J Endocrinol, 2010. **163**(4): p. 631-5.
- 2. Costeira, M.J., et al., *Iodine status of pregnant women and their progeny in the Minho Region of Portugal.* Thyroid, 2009. **19**(2): p. 157-63.
- 3. Edward Limberta, et al., *Aporte do iodo nas Regiões Autónomas da Madeira e dos Açores.* Revista Portuguesa de Endocrinologia, Diabetes e Metabolismo, 2012. **7**(2): p. 2-7.
- 4. Yarrington, C. and E.N. Pearce, *Iodine and pregnancy.* J Thyroid Res, 2011. **2011**: p. 934104.
- 5. Martha H. Stipanuk and Marie A. Caudill, *Biochemical, Physiological, and Molecular Aspects of Human Nutrition*. 3rd ed. 2012.
- 6. Skeaff, S.A., *Iodine deficiency in pregnancy: the effect on neurodevelopment in the child.* Nutrients, 2011. **3**(2): p. 265-73.
- 7. World Health Organization, Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers. 2007.
- 8. Institute of Medicine and Food and Nutrition Board, Dietary Reference Intakes for Vitamin
- A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. 2001, Washington, DC: National Academy Press.
- 9. Secretariat, W.H.O., et al., *Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation*. Public Health Nutr, 2007. **10**(12A): p. 1606-11.
- 10. European Food Safety Authority, Scientific Committee on Food, and Scientific Panel on Dietetic Products Nutrition and Allergies, *Tolerable upper intake levels for vitamins and minerals*, 2006.
- 11. Zimmermann, M.B., *Iodine deficiency*. Endocr Rev, 2009. **30**(4): p. 376-408.
- 12. World Health Organization and UNICEF, *Iodine deficiency in Europe: a continuing public health problem.* 2007.
- 13. Delange, F., *Iodine requirements during pregnancy, lactation and the neonatal period and indicators of optimal iodine nutrition.* Public Health Nutr, 2007. **10**(12a): p. 1571-80; discussion 1581-3.
- 14. Bath, S.C., et al., Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon Longitudinal Study of Parents and Children (ALSPAC). The Lancet, 2013. **382**(9889): p. 331-337.

- 15. Limbert, E., et al., *Aporte do iodo nas Regiões Autónomas da Madeira e dos Açores.* Revista Portuguesa de Endocrinologia, Diabetes e Metabolismo, 2012. **7**(2): p. 2-7.
- 16. Cavelaars, A.E., et al., *Prioritizing micronutrients for the purpose of reviewing their requirements: a protocol developed by EURRECA*. Eur J Clin Nutr, 2010. **64 Suppl 2**: p. S19-30.
- 17. Direção-Geral da Saúde, *Orientação da Direção-Geral da Saúde. Aporte de iodo em mulheres na preconceção, gravidez e amamentação*. 2013.
- 18. Direção-Geral da Educação, *Circular: Orientações sobre ementas e refeitórios escolares 2013/2014*. 2013.